Найти все значения а, при которых неравенство x^2 - (2a + 2)x + 3a + 7< или =0 не имеет решений.

Olrg3007 Olrg3007    3   23.06.2019 01:40    0

Ответы
vasilzuk vasilzuk  02.10.2020 09:02
X^2 - 2(a+1)x + (3a+7) <= 0
Такое квадратное неравенство не имеет решений,
если трехчлен слева не имеет решений.
То есть дискриминант должен быть отрицательным.
D/4 = (a+1)^2 - (3a+7) = a^2+2a+1-3a-7 = a^2-a-6 = (a-3)(a+2) < 0
-2 < a < 3
Если а должно быть целым, то a = -1, 0, 1, 2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра