Найти точку минимума функции: ответ должен быть -10

inna2briginetsg inna2briginetsg    1   22.05.2019 08:40    1

Ответы
16653 16653  17.06.2020 12:57

y'=\frac{-2x^2+x^2+100}{x^2}=\frac{(10-x)(10+x)}{x^2}

y'=0 при x=10 или x= -10

x\neq0

Проводишь, прямую отмечаешь точки 0 -10 и 10, определяешь на каждом промежутки знаки и ищешь точку минимума (производная меняет знак с минуса на плюс)

ответ: -10

ПОКАЗАТЬ ОТВЕТЫ
vanyadrachuk2004 vanyadrachuk2004  17.06.2020 12:57

ОДЗ: хнеравно0

y'=((-2x)x+x^2+100))/x^2=(-x^2+100)/x^2      y'=0        x^2=100     x=+-10

чертим луч, отмечаем слева направо -10 ;0(выколотая!);    и  10. Определяем знак производной на каждом изчетырех промежутков:   (слева направо:   -++- Так как при переходе через х=-1- производная меняет знак с- на +, то х=-10    - точка минимума! 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра