x² - 5|x| + 1 = 0
1) x < 0
x² + 5x + 1 = 0
D = 5² - 4 * 1 = 25 - 4 = 21
x₁ = (- 5 - √21)/2
x₂ = (- 5 + √21)/2
2) x ≥ 0
x² - 5x + 1 = 0
D = (- 5)² - 4 * 1 = 25 - 4 = 21
x₃ = (5 - √21)/2
x₄ = (5 + √21)/2
1) x₁ + x₂ = - 5 x₁ * x₂ = 1
(x₁ + x₂ )² = x₁² + 2x₁x₂ + x₂²
x₁² + x₂² = (x₁ + x₂)² - 2x₁x₂ = 25 - 2 = 23
2) x₃ + x₄ = 5 x₃ * x₄ = 1
(x₃ + x₄ )² = x₃² + 2x₃x₄ + x₄²
x₃² + x₄² = (x₃ + x₄)² - 2x₃x₄ = 25 - 2 = 23
ответ : 23 + 23 = 46
46
Объяснение:
1.
x²-5x+1=0
По теорему Виета
x₁+x₂=5; x₁×x₂=1
[x₁+x₂]²=25;
x₁²+x₂²=25-2x₁x₂=25-2=23
2.
x²+5x+1=0
x₃+x₄= -5; x₃×x₄=1
[x₃+x₄]²=25;
x₃²+x₄²=25-2x₃x₄=25-2=23
x² - 5|x| + 1 = 0
1) x < 0
x² + 5x + 1 = 0
D = 5² - 4 * 1 = 25 - 4 = 21
x₁ = (- 5 - √21)/2
x₂ = (- 5 + √21)/2
2) x ≥ 0
x² - 5x + 1 = 0
D = (- 5)² - 4 * 1 = 25 - 4 = 21
x₃ = (5 - √21)/2
x₄ = (5 + √21)/2
1) x₁ + x₂ = - 5 x₁ * x₂ = 1
(x₁ + x₂ )² = x₁² + 2x₁x₂ + x₂²
x₁² + x₂² = (x₁ + x₂)² - 2x₁x₂ = 25 - 2 = 23
2) x₃ + x₄ = 5 x₃ * x₄ = 1
(x₃ + x₄ )² = x₃² + 2x₃x₄ + x₄²
x₃² + x₄² = (x₃ + x₄)² - 2x₃x₄ = 25 - 2 = 23
ответ : 23 + 23 = 46
46
Объяснение:
1.
x²-5x+1=0
По теорему Виета
x₁+x₂=5; x₁×x₂=1
[x₁+x₂]²=25;
x₁²+x₂²=25-2x₁x₂=25-2=23
2.
x²+5x+1=0
x₃+x₄= -5; x₃×x₄=1
[x₃+x₄]²=25;
x₃²+x₄²=25-2x₃x₄=25-2=23