Найти предел последовательности стремящуюся к бесконечности : sqrt(n^2 + 3n)-sqrt(n2-3n)

Огнены Огнены    3   20.05.2019 02:20    0

Ответы
Женёк2006457 Женёк2006457  01.10.2020 00:18

 

 sqrt(n^2+3n)-sqrt(n^2-3n)=sqrt(n)*6/(sqrt(n+3)+sqrt(n-3))=6/(sqrt(1+3/n)+sqrt(1-3/n))
при n стремящимся к бесконечности знаменатель стремится к 2.,а вся дробь к 3.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра