Найти общее решение линейного неоднородного дифференциального уравнения с постоянным коэффициентами y''-3y'=3e^3x

10071927 10071927    1   04.08.2019 17:30    1

Ответы
kabdushevaaynash kabdushevaaynash  03.10.2020 22:18
Решение уравнения будем искать в виде y=e^{\beta\cdot x}.

Составим характеристическое уравнение.
 \beta^2-3\beta=0\\ \beta_1=0;\\ \beta_2=3;

Фундаментальную систему решений функций:
y_1=1\\ y_2=e^{3x}

Общее решение однородного уравнения:
 y_{*}=y_1+y_2=C_1\cdot e^{3x}+C_2

Теперь рассмотрим прафую часть диф. уравнения:
 f(x)=3e^{3x}

найдем частные решения.
Правая часть имеет вид уравнения
P(x)=e^{\alpha x}(R(x)\cos(\gamma x)+L(x)\sin(\gamma x)), где R(x) и S(x) - полиномы, которое имеет частное решение.

y=x^ze^{\alpha x}(P(x)\cos(\gamma x)+S(x)\sin (\gamma x)), где z -кратность корня \alpha+\gamma i

У нас R(x) = 3; L(x) = 0; \alpha=3;\,\, \gamma =0

Число \alpha + \gamma i=3 является корнем характеристического уравнения кратности z=1

Тогда уравнение имеет частное решение вида:
 y=x(Ae^{3x})
Находим 2 производные, получим
y'=3Ax3e^{3x}+Ae^{3x}\\ y''=3Ae^{3x}(3x+2)

И подставим эти производные в исходное диф. уравнения
y''-3y'=3e^{3x}\\ 3Ae^{3x}=3e^{3x}\\ A=1

Частное решение имеет вид: y_*=xe^{3x}

Общее решение диф. уравнения:
  y=C_1e^{3x}+C_2+xe^{3x}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра