Найти наименьшее значение функции y=(2x-23)^2•(4-x)+5 на промежутке [0; 14] !

Настя18031 Настя18031    1   26.08.2019 12:10    0

Ответы
ueds23 ueds23  05.10.2020 20:59
Y'=2(2x-23)(2x-23)'(4-x)-(2x-23)^2=0
4(2x-23)(4-x)-(2x-23)^2=0
Упростив получаем
(2x-23)(39-6x)=0
2x-23=0
2x=23
x=11,5-точка максимума
Или
39-6x=0
-6x=-39
x=6,5-точка минимума
Ymin=(2×6,5-23)^2 (4-6,5)+5=-245
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра