Найдите значение выражения: -6(ctg 13п/10) tg (п/5)

Katya007goi Katya007goi    2   19.05.2019 04:00    0

Ответы
markkolk77R markkolk77R  12.06.2020 08:59

Представим котангенс в числителе в виде

 

\cot\left(\frac{13\pi}{10}\right)=\cot\left(\frac{15\pi}{10}-\frac{2\pi}{10}\right)

 

По формуле разности углов котангенсов

 

\cot{(\alpha-\beta)}=\frac{\cot\alpha\cot\beta+1}{\cot\beta-\cot\alpha}

 

\cot\left(\frac{15\pi}{10}-\frac{2\pi}{10}\right)=\frac{1+\cot\frac{15\pi}{10}\cot\frac{2\pi}{10}}{\cot\frac{15\pi}{10}-\cot\frac{2\pi}{10}}

 

\frac{1+\cot\frac{15\pi}{10}\cot\frac{2\pi}{10}}{\cot\frac{15\pi}{10}-\cot\frac{2\pi}{10}}=\frac{1+0*\cot\frac{2\pi}{10}}{0-\cot\frac{2\pi}{10}}

 

\frac{1+0*\cot\frac{2\pi}{10}}{0-\cot\frac{2\pi}{10}}=\frac{1}{0-\cot\frac{\pi}{5}}=-\frac{1}{\cot\frac{\pi}{5}}

 

Теперь подставим, получившееся значение в саму формулу

 

-6*\left(-\frac{1}{\cot\frac{\pi}{5}}\right)*\frac{1}{\tan\frac{\pi}{5}}=6*\frac{1}{\cot\frac{\pi}{5}\tan\frac{\pi}{5}}

 

По свойству тангенсов и котангенсов

 

\tan\alpha*\cot\alpha=1

 

Получаем

 

6*\frac{1}{\cot\frac{\pi}{5}\tan\frac{\pi}{5}}=6

 

ответ: 6

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра