Найдите значение функции : f(x) =(x-1)²+1\x-1, в точке ее минимума

MaShall5619 MaShall5619    1   18.06.2019 22:20    3

Ответы
RamzesCake RamzesCake  02.10.2020 05:03
ОДЗ: x-1≠0⇒x≠1

f'(x)=((x-1)^2+\frac{1}{x-1})'=2(x-1)-\frac{1}{(x-1)^2}\\2(x-1)-\frac{1}{(x-1)^2}=0\ \ \ \ \ |*(x-1)^2\neq0\\2(x-1)^3-1=0\\(x-1)^3=\frac{1}{2}\\x-1=\sqrt[3]{\frac{1}{2}}\\x=\frac{1}{\sqrt[3]2}+1
Вложение.
x=\frac{1}{\sqrt[3]2}+1 - точка минимума

f(\frac{1}{\sqrt[3]2}+1)=(\frac{1}{\sqrt[3]{2}}+1-1)^2+\frac{1}{\frac{1}{\sqrt[3]{2}}+1-1}=\frac{1}{\sqrt[3]{4}}+\sqrt[3]{2}=\frac{1+2}{\sqrt[3]{4}}=\frac{3}{\sqrt[3]{4}}=f_{min}

Найдите значение функции : f(x) =(x-1)²+1\x-1, в точке ее минимума
ПОКАЗАТЬ ОТВЕТЫ