Найдите все пары простых чисел a и b, которые являются решениями уравнения a+b=42 (если можно, то полностью с объяснением) заранее

домашка68 домашка68    1   22.05.2019 14:50    0

Ответы
Софи1234567890я Софи1234567890я  18.06.2020 01:53
Простыми числами от 1 до 42 являются:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 и 41
пусть а=2, тогда b=40 - но выходит, что b - не простое, поэтому а не равно 2
пусть а=3, тогда b=39 - но выходит, что b - не простое, поэтому а не равно 3
пусть а=5, тогда b=37 - выходит, что b - простое, поэтому а равно 5, а в тридцать семь, значит у нас есть первая пара чисел
пусть а=7, тогда b=35 - но выходит, что b - не простое, поэтому а не равно 7
пусть а=11, тогда b=31 - выходит, что b - простое, поэтому а равно 11, а в 31, значит у нас есть вторая пара чисел
пусть а=13, тогда b=29 - выходит, что b - простое, поэтому а равно 13, а в 29, значит у нас есть третья пара чисел
пусть а=17, тогда b=25 - но выходит, что b - не простое, поэтому а не равно 17
пусть а=19, тогда b=23 - выходит, что b - простое, поэтому а равно 19, а в 23, значит у нас есть четвертая пара чисел
дальше числа а и в меняются местами, поэтому у нас есть еще столько же (т.е. 4) пар чисел, а всех пар восемь
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра