Найдите все пары целых неотъемлемых чисел(х;у)удовлетворяющих уравнению 5х² - 4xy +у

DayanaTolepber DayanaTolepber    3   03.12.2021 21:21    0

Ответы
tatianalednewa tatianalednewa  18.01.2022 16:07

Объяснение:

5x²-4xy+y²=4x+1

y²-4xy=-5x²+4x+1

y²-4xy+4x²=-x²+4x+1

(y-2x)²=-x²+4x+1

1) y-2x=√(-x²+4x+1); y=2x+√(-x²+4x+1)

2) y-2x=-√(-x²+4x+1); y=2x-√(-x²+4x+1)

-x²+4x+1≥0; x²-4x-1≤0

Допустим x²-4x-1=0; D=16+4=20

x₁=(4-2√5)/2=2-√5; x₂=2+√5

Возьмём для определения знака пробную точку на промежутке [2-√5; 2+√5], например, 0:

-0²+4·0+1=1; 1>0

Неравенство выполняется на данном интервале:

             -                             +                       -

..>x

                        2-√5                       2+√5

x∈[2-√5; 2+√5]

2-√5≈-0,24; 2+√5≈4,24

Выбираем пары целочисленных решений:

x=0; y=2·0±√(-0²+4·0+1); y₁=-1; y₂=1

x=1; y=2·1±√(-1²+4·1+1)=2±2; y₁=0; y₂=4

x=2; y=2·2±√(-2²+4·2+1)=4±√5 - не подходит.

x=3; y=2·3±√(-3²+4·3+1)=6±2; y₁=4; y₂=8

x=4; y=2·4±√(-4²+4·4+1)=8±1; y₁=7; y₂=9

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра