Найдите точку максимума функции у=(х-5)^2*e^x-7

BUSOS BUSOS    3   08.07.2019 02:00    0

Ответы
287888 287888  31.07.2020 06:59
(x-5)^2*e^x-7

Для нахождения локального максимума функции, найдём её стационарные точки, точки недифференцируемости и выясним поведение функции в некоторой окрестности данных точек.

Вычислим первую производную функции:
((x-5)^2*e^x-7)'=((x-5)^2*e^x+(-7))'
[применяем правило (u+v)'=u'+v']
((x-5)^2*e^x)'+(-7)'
[применяем правило (c)'=0, где c=const]
((x-5)^2*e^x)'
[применяем правило (uv)'=u'v+uv']
((x-5)^2)'*e^x+(x-5)^2*(e^x)'
[используем (e^x)^{(n)}=e^x, ∀n∈N_{0}]
((x-5)^2)'*e^x+(x-5)^2*e^x=e^x(((x-5)^2)'+(x-5)^2)
Найдём отдельно производную сложной функции (x-5)^2:
[по правилам (f(u(x)))'=f'(u(x))*u'(x) и (x^m)'=m*x^(m-1)]
2*(x-5)*1=2*(x-5)
Подставим найденное значение в e^x(((x-5)^2)'+(x-5)^2):
e^x(2*(x-5)+(x-5)^2)=e^x(x-5)(2+x-5)=e^x(x-5)(x-3)

Приравняем производную к нулю и найдём стационарные точки, точки недифференцируемости:
e^x(x-5)(x-3)=0
Отсюда x=5;3 - стационарные точки. Точек недифференцируемости нет.

Рассмотрим первую стационарную точку x=5. При x↑ производная меняет знак с "-" на "+" => x=5 - точка локального минимума функции.
Теперь рассмотрим стационарную точку x=3. При x↑ производная меняет знак с "+" на "-" => x=3 - точка локального максимума функции.

ответ: 3.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра