Найдите точку максимума функции: , с подробнейшим решением.

ритуа ритуа    2   10.03.2019 08:50    1

Ответы
ekaterina7201 ekaterina7201  24.05.2020 15:30

Находим производную

y'=-2/3*3/2sqrt(x)+3=-sqrt(x)+3

находим критическую точку приравняв к нулю произодную

y'=0

x=9

проверяем что точка является точкой максимума, для чего находим вторую производную

y''=-1/2sqrt(x)<0

она меньше нуля поэтому в точке имеется максимум.

y(9)-max=-2/3*27+27+1=10

ПОКАЗАТЬ ОТВЕТЫ
6473089 6473089  24.05.2020 15:30

Для исследования функции сначала нужно взять производную. Чтобы проще было взять воспользуемся формулой сложения степеней: a^xa^y=a^{x+y}

Получим что: x\sqrt{x}=xx^{\frac{1}{2}}=x^{\frac{3}{2}} 

Теперь перепишем функцию:

y=-\frac{2}{3}x^{\frac{3}{2}}+3x+1 

И берем производную:

y'=-\frac{2}{3}\frac{3}{2}x^{\frac{1}{2}}+3=3-\sqrt{x}

Дальше найдем точку где производная обращается в 0.

Для этого решаем уравнение:  3-\sqrt{x}=0, \ \sqrt{x}=3, \ x=9

Это будет точка экстремума. Но точка экстремума может быть как минимумом так и максимумом. Надо показать что это максимум. Как это делается. Есть 2 метода.
1 метод:

Рассмотрим как ведет себя производная при x<9 и при x>9.  Очевидно, что при x>9 производная  3-\sqrt{x}0. Значит функция растет. При x>9, наоборот  3-\sqrt{x}<0[/tex]. Значит функция убывает. Если до точки х=9 функция растет, а после нее убывает, то получается что это максимум функции</p&#10;<p </p&#10;<p2 метод:</p&#10;<pВозьмем вторую производную от исходной функции получим [tex]y''=-\frac{1}{2\sqrt{x}}. Для любых положительных х, вторая производная будет меньше нуля, т.е y''<0. Это необходимое и достаточное условие, чтобы функция была выпуклой вверх. Т.к. функция выпулкая вверх, то точка экстремума будет точкой максимума. ч.т.д

 

ответ: точка максимума x=9, значение функции в этой точке y(9)=10 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра