Найдите сумму наибольшего и наименьшего значений функции на отрезке [-3; 0] решить

060804528 060804528    3   01.07.2019 17:00    0

Ответы
cheropitan cheropitan  24.07.2020 23:52
Через исследование функции на экстремум.
Производную возьмем
y'=3x^2+3x-6
Максимум и минимум функции достигается в точках, где производная равна 0.
3x^2+3x-6=0 \\ x^2+x-2 = 0 \\
по т. Виета x1 = 1; x2 = -2.
Единица в наш отрезок не попадает, значит, либо наибольшее, либо наименьшее значение будет в точке -2.
Подставим -2 в исходное уравнение функции:
y=(-2)^3+1.5*(-2)^2-6*(-2) = -8+1.5*4+12= \\ -8+6+12=10.
В точке 1 значение функции примет минимальное: -3,5, но в наш отрезок эта точка не входит. Можно подставить точку -3, но там функция будет равняться 4,5. Значит, минимальное значение функция примет в точке 0. Функция там будет равняться нулю. Таким образом, сумма наибольшего и наименьшего значений на отрезке будет равняться 10+0=10
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра