Найдите сумму корней уравнения cos2x+9sinx+4=0

Регина2411 Регина2411    1   19.08.2019 02:20    2

Ответы
STRELOK9999 STRELOK9999  05.10.2020 03:58
cos2x+9sinx+4=0
1-2sin^{2}x+9sinx+4=0

Замена: sinx=t, -1<t<1

-2t^{2}+9t+5=0
2t^{2}-9t-5=0, D=81+4*2*5=121=11^{2}
t_{1}= \frac{9+11}{4} =5\ \textgreater \ 1 - посторонний корень
t_{2}= \frac{9-11}{4} =-0.5

Вернемся к замене:
sinx=-0.5
x=- \frac{ \pi }{6} +2 \pi k, k∈Z
x=- \frac{5 \pi }{6} +2 \pi k, k∈Z
или x=(-1)^{k+1}* \frac{ \pi }{6} + \pi k, k∈Z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра