Найдите сумму корней квадратного уравнения ax^2+bx+a=0 с положительным коэффициентом если оно имеет два равных корня и a^2+b^2=20

Xadice12345 Xadice12345    3   26.03.2020 23:18    1

Ответы
лиза2744 лиза2744  12.10.2020 06:28

D=b^2-4a^2\\\\ x_{1}=x_{2}\\\\D=0 \\\\b^2-4a^2=0\\\\b^2=4a^2\\\\a^2+b^2=20\\\\5a^2=20\\\\ a^2=4\\\\b^2=16

По теореме Виета:

x_{1}+x_{2}=-\frac{b}{a}

По условию коэффициенты положительные, значит

a=2; b=4\\\\x_{1}+x_{2}=-2

ПОКАЗАТЬ ОТВЕТЫ
vanuytoa vanuytoa  12.10.2020 06:28

Объяснение:

ax²+bx+a=0; a>0; b>0

a²+b²=20; x₁=x₂; x₁+x₂=?

x₁=x₂⇒D=0

0=D=b²-4a·a=b²-4a²⇒b²=4a²

a²+4a²=20

5a²=20

a²=4

a>0; b>0⇒a=2⇒b²=4·2²=16⇒b=4

x₁+x₂=-b/a=-4/2=-2

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра