Найдите sin (a+b) и cos (a-b) если sin a =0,6 и cos b =0,8​

Милана1245 Милана1245    2   20.01.2021 15:38    420

Ответы
Panda2368 Panda2368  21.12.2023 22:04
Чтобы найти sin (a+b) и cos (a-b) при известных значениях sin a и cos b, нужно воспользоваться формулами тригонометрии и математическими свойствами синуса и косинуса.

1. Начнем с sin (a+b).
Воспользуемся формулой сложения для синуса:
sin (a+b) = sin a * cos b + cos a * sin b

Подставляя известные значения, получаем:
sin (a+b) = 0,6 * 0,8 + cos a * sin b

2. Теперь найдем cos (a-b).
Воспользуемся формулой вычитания для косинуса:
cos (a-b) = cos a * cos b + sin a * sin b

Подставляя известные значения, получаем:
cos (a-b) = cos a * 0,8 + 0,6 * sin b

Теперь нам осталось найти значения cos a и sin b, чтобы получить окончательный результат.

3. Для нахождения cos a воспользуемся одним из основных тригонометрических тождеств - формулой Пифагора:
sin^2 a + cos^2 a = 1

Подставим значение sin a = 0,6:
0,6^2 + cos^2 a = 1
0,36 + cos^2 a = 1
cos^2 a = 1 - 0,36
cos^2 a = 0,64

Найдем квадратный корень:
cos a = √0,64
cos a = 0,8

4. Для нахождения sin b воспользуемся аналогичной формулой Пифагора:
sin^2 b + cos^2 b = 1

Подставим значение cos b = 0,8:
sin^2 b + 0,8^2 = 1
sin^2 b + 0,64 = 1
sin^2 b = 1 - 0,64
sin^2 b = 0,36

Найдем квадратный корень:
sin b = √0,36
sin b = 0,6

Теперь, подставляя найденные значения sin a, cos b, cos a и sin b в исходные формулы, получаем:

sin (a+b) = 0,6 * 0,8 + 0,8 * 0,6
sin (a+b) = 0,48 + 0,48
sin (a+b) = 0,96

cos (a-b) = 0,8 * 0,8 + 0,6 * 0,6
cos (a-b) = 0,64 + 0,36
cos (a-b) = 1

Таким образом, при заданных значениях sin a = 0,6 и cos b = 0,8, мы получаем sin (a+b) = 0,96 и cos (a-b) = 1.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра