Найдите периметр прямоугольника, если смежные стороны относятся как 3:4, а диагональ прямоугольника = 10 см. Заранее

engelsvova engelsvova    3   16.02.2020 23:42    1

Ответы
alena1706 alena1706  11.10.2020 06:07

Р = 28 см.

Объяснение:

По условию смежные стороны прямоугольника относятся как 3:4.

Обозначим одну часть через x.

Тогда ширина прямоугольника будет равна 3х, т.к. осоставляет 3 таких части, а длина прямоугольника будет равна 4х, т.к. оставляет 4 таких части.

Диагональ в прямоугольнике с двумя смежными сторонами образует прямоугольный треугольник (см. рисунок). Диагональ равна 10 см.

Воспользуемся теоремой Пифагора и составим уравнение.

10^2=(3x)^2+(4x)^2\\ \\ 100=9x^2+16x^2\\ \\ 100=25x^2\\ \\ x^2=\frac{100}{25}\\ \\ x^2=4\\ \\ x=\sqrt{4} \\ \\ x=2

Ширина прямоугольника: 3х = 3·2 = 6 (см).

Длина прямоугольника: 4х = 4·2 = 8 (см).

P=2(6+8)=28 (см)


Найдите периметр прямоугольника, если смежные стороны относятся как 3:4, а диагональ прямоугольника
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра