1) y=x²-6x+9=(x-3)² - графиком является квадратичная парабола, ветви которой направлен вверх, значит наименьшее значение достигается в вершине параболы. Координаты вершины параболы (3;0). Можно найти координаты вершины параболы по формуле: х0=-b/(2a)=6/2=3, у0=0: (3;0). ответ: наименьшее значение равно 0 (у=0) при х=3. 2) у=x²-6x+12- графиком является квадратичная парабола, ветви которой направлен вверх, значит наименьшее значение достигается в вершине параболы. Находим координаты вершины параболы по формуле: x0=-b/(2a)=6/2=3, y0=3²-6*3+12=9-18+12=3. (3;3) ответ: наименьшее значение равно 3 (у=3) при х=3.
Можно найти координаты вершины параболы по формуле:
х0=-b/(2a)=6/2=3, у0=0: (3;0).
ответ: наименьшее значение равно 0 (у=0) при х=3.
2) у=x²-6x+12- графиком является квадратичная парабола, ветви которой направлен вверх, значит наименьшее значение достигается в вершине параболы.
Находим координаты вершины параболы по формуле:
x0=-b/(2a)=6/2=3, y0=3²-6*3+12=9-18+12=3.
(3;3)
ответ: наименьшее значение равно 3 (у=3) при х=3.