Найдите наименьше значение функции y=4x^4-4x^2+23

RinOkumura99 RinOkumura99    1   24.06.2019 09:50    1

Ответы
MonstorXXXX MonstorXXXX  19.07.2020 22:24
Нужно найти критические точки
1) вычислим производную функции
y'=16x^3-8x
2) Производная равна нулю
16x^3-8x=0 \\ 8x(8x^2-1)=0 \\ x_1=0 \\ x_2= \frac{ \sqrt{2} }{2} \\ x_3=-\frac{ \sqrt{2} }{2}

___-__(-\frac{ \sqrt{2} }{2})__+__(0)___-__\frac{ \sqrt{2} }{2}___+__>

Минимум в точке -\frac{ \sqrt{2} }{2}. подставив вместо х в функцию получаем наименьшее значение функции у=22

ответ: 22.
ПОКАЗАТЬ ОТВЕТЫ