Мэрвэ Г. Гуру (4232) 2 года назад1). Для области определения ставим условие: -х2-8х-12 >=0 отсюда х2+8х+12 <=0 (и решим) D=64-48=16 x=(.-8+-4):2 х1=-2 х2=-6 график функции -парабола пересекает ось Ох в точках-2 и -6, ветви вверх. По условию берем отрицательную часть [-2; -6] 2). функция у=квадратный корень из -х2-8х-12 значения функции в промежутке [-5;-2]: вершина параболы в точке х=-4, у=2, наибольшее х=-5; у=корень из3 х=-2; у=0 наименьшее. 3) промёжутки возрастания и убывания функции на [-6; -4) функция возрастает, на (-4;-2] убывае
Y=-x^2+8x-12, y=ax^2+bx+c Так как это парабола и a=-1<0, то ветви опущены вниз, значит наименьшего значения нет. Наибольшее значение достигается в вершине параболы: Xв=-b/(2a) Xв=-8/(-2)=4. Yв=Y(4)=-16+32-12=4. ответ: Наименьшего значения нет, наибольшее - 4.
-х2-8х-12 >=0 отсюда
х2+8х+12 <=0 (и решим)
D=64-48=16
x=(.-8+-4):2
х1=-2
х2=-6
график функции -парабола пересекает ось Ох в точках-2 и -6, ветви вверх.
По условию берем отрицательную часть [-2; -6]
2). функция у=квадратный корень из -х2-8х-12
значения функции в промежутке [-5;-2]:
вершина параболы в точке х=-4, у=2, наибольшее
х=-5; у=корень из3
х=-2; у=0 наименьшее.
3) промёжутки возрастания и убывания функции
на [-6; -4) функция возрастает, на (-4;-2] убывае
y=ax^2+bx+c
Так как это парабола и a=-1<0, то ветви опущены вниз, значит наименьшего значения нет.
Наибольшее значение достигается в вершине параболы:
Xв=-b/(2a)
Xв=-8/(-2)=4.
Yв=Y(4)=-16+32-12=4.
ответ: Наименьшего значения нет, наибольшее - 4.