Для начала найдем производную и приравняем ее к нулю:[-2]..+..{0}..-..{1}..+..[5]
Чтобы решать такие задачи, необходимо ученику знать, что такое производная.
Алгоритм решения таков:
1)Подставляем конечные точки (в вашем случае - от -2 до 5) в функцию. Сравниваем результаты
2)Находим производную, приравниваем к 0 (т.е. находим экстремум функции)
Начнем с 1.
-16-12-12=-40
250-75-12=163
-40<163.
Находим экстремум:
6x²-6x
6x(x-1)=0
x₁=0;
x₂=1.
Вставляем найденные значения в функцию
0-0-12=-12
2-3-12=-13
Раз значений меньше нет, значит min=-40; max=163
Для начала найдем производную и приравняем ее к нулю:


[-2]..+..{0}..-..{1}..+..[5]
Чтобы решать такие задачи, необходимо ученику знать, что такое производная.
Алгоритм решения таков:
1)Подставляем конечные точки (в вашем случае - от -2 до 5) в функцию. Сравниваем результаты
2)Находим производную, приравниваем к 0 (т.е. находим экстремум функции)
Начнем с 1.
-16-12-12=-40
250-75-12=163
-40<163.
Находим экстремум:
6x²-6x
6x(x-1)=0
x₁=0;
x₂=1.
Вставляем найденные значения в функцию
0-0-12=-12
2-3-12=-13
Раз значений меньше нет, значит min=-40; max=163