Найдите наибольшее и наименьшее значение функции f(x) на указанном промежутке: f(x)=8x^2 +1//4x,(0; + ∞) f(x)=(x^2 -x+4)//x^2+4 [0; +∞) f(x)=(x^2 -5x+6)//x^2 +1 (-∞; 0]

krashakova krashakova    3   10.08.2019 14:20    1

Ответы
Adelia742 Adelia742  04.10.2020 09:37
F(x)=8x^2 +1//4x,(0;+ ∞)
F`(x)=[16x*4x-4*(8x²+1)]/16x²=(64x²-32x²-4)/16x²=(32x²-4)/16x²=0
4(8x²-1)=0
4(2√2x-1)(2√2x+1)=0
x=1/2√2  x=-1/2√2
             +                          _                      +
(-1/2√2)(1/2√2)
                   max                        min
ymax=(8*1/8+1):(4*1/2√2)=2:√2=√2
ymin=(8*1/8+1);(-4*1/2√2)=2:(-√2)=-√2

F(x)=(x^2 -x+4)//x^2+4 [0;+∞)
F`(x)=[(2x-1)*(x²+4)-2x*(x²-x+4)]/(x²+4)²=
=(2x³+8x-x²-4-2x³+2x²-8x)/(x²+4)²=(x²-4)/(x²+4)²=0
(x-2)(x+2)=0
x=2  x=-2
           +                            _                         +
(-2)[0](2)
                                                           min
ymin=(4-2+4)/(4+4)=6/8=3/4
   
F(x)=(x^2 -5x+6)//x^2 +1 (-∞;0]
F`(x)=[(2x-5)(x²+1)-2x(x²-5x+6)]/(x²+1)²=
=(2x³+2x-5x²-5-2x³+10x²-12x)/(x²+1)²=(5x²-10x-5)/(x²+4)²=0
5(x²-2x-1)=0
D=4+4=8
x1=(2-2√2)/2=1-√2 U x2=1+√2
               +                          _                            +
(1-√2)[0](1+√2)
                     max
ymax=[(1-√2)²-5(1-√2)+6)]/[(1-√2)²+1]=(1-2√2+2-5+5√2+6)/(1-2√2+2+1)=
=(4+3√2)/(4-2√2)=(4+3√2)(4+2√2)/(16-8)=(16+20√2+12)/8=(28+20√2)/8=
=(7+5√2)/2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра