1) Область определения функции x^2 - 3x + 3 ≠0. ..y' = (2* (x^2 - 3x + 3) - ( 2x - 3) (2x - 3) ) / (x^2 - 3x +3)^2 = ( 2 x^2 - 6x +6 - 4x^2 +12x - 9) / (x^2 - 3x + 3) ^2 ...x2 ≈ 2, 366; x1-точка минимума. x2 - точка максимума. ..y'' = 0 при (-4x+6) = 0 или ( (x^2 - 3x +3)^2 + (-2x^2 +6x -3) ..
( вроди так )
:D
То есть функция сначала убывает, потом возрастает, значит в точке
минимум функции. Максимума функции не существует.
1) Область определения функции x^2 - 3x + 3 ≠0. ..y' = (2* (x^2 - 3x + 3) - ( 2x - 3) (2x - 3) ) / (x^2 - 3x +3)^2 = ( 2 x^2 - 6x +6 - 4x^2 +12x - 9) / (x^2 - 3x + 3) ^2 ...x2 ≈ 2, 366; x1-точка минимума. x2 - точка максимума. ..y'' = 0 при (-4x+6) = 0 или ( (x^2 - 3x +3)^2 + (-2x^2 +6x -3) ..
( вроди так )
:D
То есть функция сначала убывает, потом возрастает, значит в точке
минимум функции. Максимума функции не существует.