Найдите критические точки функции. определите, какие из них являются точками максимума, а какие – точками минимума: а) y = -x²- 8x + 2 б) y = 15 + 48x - x³ , решите и подскажите алгоритм решения на будущее

saint6928 saint6928    2   14.09.2019 07:20    5

Ответы
malygin73rus malygin73rus  21.08.2020 08:00
а) y = -x²- 8x + 2 

Найти производную
а) y^1 = (-x^2- 8x + 2 )^1 = -2x - 8

Приравнять производную к нулю и найти х, это будет точка экстремума
-2x - 8 = 0
2x = -8
x = -4

Функция y = -x²- 8x + 2  - квадратичная парабола, ветки направлены вниз, Значит, в точке   x = -4  будет максимум.

б) y = 15 + 48x - x³
Найти производную

y^1 = (15 + 48x - x^3)^1 = 48 - 3x^2
Приравнять производную к нулю
48 - 3x^2 = 0 \\ x^2 = 16 \\ x=б4

Дальше можно через знак производной, либо через соседние точки

x = 4  Подставить в исходную функцию, а затем соседнее значение
y = 15 + 48*4 - 4^3 = 15 +192 - 64 = 143 \\ x = 5 \\ y = 15 + 48*5 - 5^3 = 130 
Т.к. y(5) < y(4), значит функция y = -x²- 8x + 2  на интервале х∈[4; +∞) убывает, точка х = 4 является максимумом.

x = -4
y = 15 + 48*(-4) - (-4)^3= 15 - 192 + 64 = -113 \\ x = -5 \\ y = 15 + 48*(-5) - (-5)^3= 15 - 240 +125 = -100

Т.к. y(-5) > y(-4), значит функция y = -x²- 8x + 2  на интервале
х∈(-∞;-4] убывает, точка х = -4 является минимумом.

Найдите критические точки функции. определите, какие из них являются точками максимума, а какие – то
ПОКАЗАТЬ ОТВЕТЫ
Rodionok2341 Rodionok2341  21.08.2020 08:00
ответы и решение на фото
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра