Площадь пр-ка S = x*y (1)
Периметр Р = 2(х + у)
72 = 2(х + у)
36 = х + у,
откуда у = 36 - х (2)
Подставим полученное в (1)
S = x*(36 - х)
S = 36x - х^2
Найдём производную
S' = 36 - 2x
Приравняем её нулю
36 - 2x = 0
2х = 36
х = 18
При х=18 имеет место экстремум функции S(y)
В этой точке производная меняет знак с + на -, поэтому это точка максимума
Smax = 36*18 - 18^2 = 324 (кв.см)
Подставим х=18 в (2) и получим у
у = 36 - х = 36 - 18 = 18(см)
ответ: Наибольшую площадь имеет квадрат со стороной, равной 18см.
P=2(a+b), следовательно сумма 2х смежных сторон = 36 см. S=ab, нам нужно, чтобы она была наибольшей, а это будет в том случае, если стороны будут одинаковы и равняться 18 см.
Площадь пр-ка S = x*y (1)
Периметр Р = 2(х + у)
72 = 2(х + у)
36 = х + у,
откуда у = 36 - х (2)
Подставим полученное в (1)
S = x*(36 - х)
S = 36x - х^2
Найдём производную
S' = 36 - 2x
Приравняем её нулю
36 - 2x = 0
2х = 36
х = 18
При х=18 имеет место экстремум функции S(y)
В этой точке производная меняет знак с + на -, поэтому это точка максимума
Smax = 36*18 - 18^2 = 324 (кв.см)
Подставим х=18 в (2) и получим у
у = 36 - х = 36 - 18 = 18(см)
ответ: Наибольшую площадь имеет квадрат со стороной, равной 18см.
P=2(a+b), следовательно сумма 2х смежных сторон = 36 см. S=ab, нам нужно, чтобы она была наибольшей, а это будет в том случае, если стороны будут одинаковы и равняться 18 см.