Найди: 1+2+2^2+...+2^13/1+2+2^2+...+2^6.

 

ответ:

1. в решении задачи используется формула (выбери один ответ):

суммы конечной арифметической прогрессии

рекуррентная формула n-ого члена прогрессии

суммы конечной геометрической прогрессии

 

2. Отметь выражение, полученное при вычислении значения дроби:

2^13−1/2^6−1

2^6+1/2^13+1

2^14−1/2^7−1

 

3. Запиши результат:

1+2+2^2+...+2^13/1+2+2^2+...+2^6 = .

херфигзнает херфигзнает    2   15.09.2020 08:23    62

Другие вопросы по теме Алгебра