На рисунках (1-4) изображена графики функций, определенных на отрезке [-4; 4]. К каждому начале предложения (1-4) подберите его окончания (А-Д) так, чтобы образовалось правильное утверждение.
Начало предложения:
1. Функция, график которой изображен на рис. 1,
2. Функция, график которой изображен на рис. 2,
3. Функция, график которой изображен на рис. 3,
4. Функция, график которой изображен на рис. 4,
Окончание предложение:
А) имеет две точки локального экстремума.
Б) является четной.
В) является нечетной.
Г) приобретает наибольшее значение, равное 4.
Д) имеет три нуля


На рисунках (1-4) изображена графики функций, определенных на отрезке [-4; 4]. К каждому начале пред

pivovarchik077 pivovarchik077    1   08.08.2021 16:13    0

Ответы
Ʈгiceгatoρѕ Ʈгiceгatoρѕ  08.08.2021 16:20

1 - В, 2 - А, 3 - Д, 4 - Б.

Объяснение:

Определить четную и нечетную функцию можно так: если функция симметрична оси ординат (ось у) то это функция четная, если симметрична относительно начала координат (0,0) то эта функция нечетная.

Сразу видно, что рис. 4 симметрична относительно оси ординат и является четной, а рис. 1 симметрична относительно начала координат и является нечетной.

Нулем функции называют место, где функция пересекает ось абсцисс (ось х), функция на рис. 3 пересекает как раз трижды.

И локальный экстремум  - это максимальное или минимальное значение функции на определенной ее части. На рис. 2 как раз видно два таких значения.

ПОКАЗАТЬ ОТВЕТЫ
mneo98 mneo98  08.08.2021 16:20

1-В - потому что график симметричен относительно начала координат

2-А - имеет две точки локального экстремума min и max

3-Д - имеет три нуля, так как в трех точках пересекает ось OX

4-Б - потому что график симметричен относительно оси OY.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра