sin3x-cos5x =корень их3(sin5x-cos3x)
1/2*sin3x-1/2*cos5x =`\/3/2*sin5x-`\/3/2*cos3x
1/2*sin3x+`\/3/2*cos3x=1/2*cos5x +`\/3/2*sin5x
cos60*sin3x+sin60*cos3x=sin30*cos5x+cos30*sin5x
sin(60+3x)=sin(30+5x)
sin(П/3+3x)-sin(П/6+5x)=0
2sin(П/12-x)cos(П/4+4x)=0
sin(П/12-x)=0 cos(П/4+4x)=0
П/12-х=Пк П/4+4x=П/2+Пк
х=П/12+Пк х=П/16+Пк/4
значения берутся из таблицы
x = πk/4 - π/48
x = 3π/4 + πk
Объяснение:
cos3x - sin5x = √3 (cos5x + sin3x)
cos3x - sin5x = √3 cos5x + √3 sin3x
cos3x - √3 sin3x = sin5x + √3 cos5x
2*(1/2cos3x - √3/2 sin3x ) = 2*(1/2sin5x + √3/2 cos5x)
1/2cos3x - √3/2 sin3x = 1/2sin5x + √3/2 cos5x
sin(30° - 3x) = sin(5x + 60°)
sin(30° - 3x) - sin(5x + 60°) = 0
2sin( ((30° - 3x) - (5x + 60°))/2)*cos(((30° - 3x)+ (5x + 60°))/2) = 0
2sin(-4x-15°)cos(-x + 45°) = 0
-2sin(4x + π/12)cos(x - π/4) = 0
1) sin(4x + π/12) = 0
4x + π/12 = πk
4x = πk - π/12
2) cos(x - π/4) = 0
x - π/4 = π/2 + πk
x = π/2 + πk + π/4
sin3x-cos5x =корень их3(sin5x-cos3x)
1/2*sin3x-1/2*cos5x =`\/3/2*sin5x-`\/3/2*cos3x
1/2*sin3x+`\/3/2*cos3x=1/2*cos5x +`\/3/2*sin5x
cos60*sin3x+sin60*cos3x=sin30*cos5x+cos30*sin5x
sin(60+3x)=sin(30+5x)
sin(П/3+3x)-sin(П/6+5x)=0
2sin(П/12-x)cos(П/4+4x)=0
sin(П/12-x)=0 cos(П/4+4x)=0
П/12-х=Пк П/4+4x=П/2+Пк
х=П/12+Пк х=П/16+Пк/4
значения берутся из таблицы
x = πk/4 - π/48
x = 3π/4 + πk
Объяснение:
cos3x - sin5x = √3 (cos5x + sin3x)
cos3x - sin5x = √3 cos5x + √3 sin3x
cos3x - √3 sin3x = sin5x + √3 cos5x
2*(1/2cos3x - √3/2 sin3x ) = 2*(1/2sin5x + √3/2 cos5x)
1/2cos3x - √3/2 sin3x = 1/2sin5x + √3/2 cos5x
sin(30° - 3x) = sin(5x + 60°)
sin(30° - 3x) - sin(5x + 60°) = 0
2sin( ((30° - 3x) - (5x + 60°))/2)*cos(((30° - 3x)+ (5x + 60°))/2) = 0
2sin(-4x-15°)cos(-x + 45°) = 0
-2sin(4x + π/12)cos(x - π/4) = 0
1) sin(4x + π/12) = 0
4x + π/12 = πk
4x = πk - π/12
x = πk/4 - π/48
2) cos(x - π/4) = 0
x - π/4 = π/2 + πk
x = π/2 + πk + π/4
x = 3π/4 + πk