Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
1. Цифра 1 встречается 1 раз - это благоприятные исходы.
Всего 9 цифр - это общее количество исходов.
Вероятность того, что цифра 1 будет на первом месте 1/9.
2. Цифра 2 будет выбираться из 9 - 1 = 8 карточек.
Тогда вероятность ее выбора 1/8.
3. Цифра 3 выбирается из 9 - 2 = 7 карточек. Вероятность выбора 1/7.
4. Цифра 4 выбирается из 9 - 3 = 6 карточек. Вероятность 1/6.
5. Совместная вероятность равна произведению индивидуальных.
P = 1/9 * 1/8 * 1/7 * 1/6 = 1/3024.
ответ: Вероятность получить число 1234 равна 1/3024.
С9! /(9-4)! = 1*2*3*4*5*6*7*8*9/1*2*3*4*5=6*7*8*9=3024
Из 3024 случай 1 попадётся 4321
Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
1. Цифра 1 встречается 1 раз - это благоприятные исходы.
Всего 9 цифр - это общее количество исходов.
Вероятность того, что цифра 1 будет на первом месте 1/9.
2. Цифра 2 будет выбираться из 9 - 1 = 8 карточек.
Тогда вероятность ее выбора 1/8.
3. Цифра 3 выбирается из 9 - 2 = 7 карточек. Вероятность выбора 1/7.
4. Цифра 4 выбирается из 9 - 3 = 6 карточек. Вероятность 1/6.
5. Совместная вероятность равна произведению индивидуальных.
P = 1/9 * 1/8 * 1/7 * 1/6 = 1/3024.
ответ: Вероятность получить число 1234 равна 1/3024.
С9! /(9-4)! = 1*2*3*4*5*6*7*8*9/1*2*3*4*5=6*7*8*9=3024
Из 3024 случай 1 попадётся 4321