Можно ли расставить все натуральные числа от 1 до 1000 по кругу так, что бы сумма любых трёх подряд идущих чисел была простым числом?

Проник755 Проник755    1   06.10.2019 16:10    3

Ответы
Turtygin Turtygin  06.10.2019 16:10

нельзя.

сумма трех натуральных чисел не меньше трёх, чтобы она была простым числом, она должна быть как минимум нечетной - все простые числа, большие двух, нечетные.

рассмотрим суммы  соседних троек: a + b + c, b + c + d. так как обе суммы нечётны, то a и d должны быть одинаковой чётности (дальше я это буду записывать в виде a = d). значит, все числа, между которыми стоят два каких-то числа, должны быть одинаковой чётности.

1-е число = 4-е = 7-е = = 100-е = 3-е = 6-е = 9-е = = 99-е = 2-е = 5-е = 8-е = = 98-е = 1-е (например, между 100-м и 3-м числами стоят два числа: первое и второе).

итак, получилось, что все сто чисел должны быть одинаковой чётности. для последовательных натуральных чисел от 1 до 100 это, разумеется, неверно, поэтому их расставить по кругу так, чтобы сумма любых трёх подряд идущих чисел была простым числом, не получится.

ПОКАЗАТЬ ОТВЕТЫ