Можете с каким либо из этих Дифф.Уравнениями? Буду благодарен за все


Можете с каким либо из этих Дифф.Уравнениями? Буду благодарен за все

Zender111 Zender111    2   01.01.2022 23:05    0

Ответы
нюра55587 нюра55587  15.02.2022 10:35

1) Интегрируем обе части: y' = \dfrac{1}{5}e^{5x}+\sin x-\dfrac{x^4}{2}+C_{1}. Поскольку y'(0) = 1/5, то 1/5 = 1/5+0-0+C_{1} \Leftrightarrow C_{1} = 0. Интегрируем еще раз: y = \dfrac{1}{25}e^{5x}-\cos x - \dfrac{x^{5}}{10}+C_{2}. Но поскольку y(0) = -1, то -1 = 1/25-1+C_{2} \Leftrightarrow C_{2} = -1/25. Следовательно, ответ: \boxed{y = \dfrac{1}{25}e^{5x}-\cos x-\dfrac{x^{5}}{10}-\dfrac{1}{25}}

2) Сделаем замену y' = z. Тогда xz'\ln x = z\stackrel{z=0\text{ solution}}{\to} \dfrac{dz}{z}=\dfrac{dx}{x\ln x} = \dfrac{d(\ln x)}{\ln x} \Rightarrow \ln|z| = \ln|\ln x|+\overline{C}\Rightarrow |z| = e^{\overline{C}}|\ln x| \Leftrightarrow z = \tilde{C}\ln x

После обратной замены: y = \displaystyle \int \widetilde{C}\ln x dx \stackrel{dv=dx,\ u=\ln x}{=} \widetilde{C}\left(x\ln x-\int x\cdot \dfrac{1}{x}dx\right) =\boxed{ \widetilde{C}(x\ln x - x+C)}

3) Здесь снова делаем замену z=y'. Тогда z' -z = 8x^2e^{x}. Решаем однородное уравнение: z' - z = 0 \Leftrightarrow \dfrac{dz}{dx} = z \to\dfrac{dz}{z} = dx \to \ln |z| = x+\widetilde{C} \to z = Ce^{x}. Применяем метод вариации постоянной, то есть ищем решение в виде C(x)e^{x}: C'(x)e^{x}+C(x)e^{x} - C(x)e^{x} = 8x^2e^{x} \Leftrightarrow C'(x) = 8x^2 \Leftrightarrow C(x) = \dfrac{8}{3}x^{3}+\overline{C}. Значит, z = \left(\dfrac{8}{3}x^{3}+\overline{C}\right)e^{x} = y'. Здесь просто интегрируем. Чтобы не делать несколько раз интегрирование по частям, можно понять, что первообразная x^{3}e^{x} имеет вид P(x)e^{x}, где P(x) -- некоторый полином. Тогда (P(x)e^{x})' = (P(x))'e^{x}+P(x)e^{x} = x^{3}e^{x} \Leftrightarrow (P(x))' +P(x) = x^{3}, то есть по сути, требуется решить еще один диффур, но можно поступить проще: P(x) = \sum\limits_{j=0}^{n}a_{n-j}x^{n-j};\; a_{n}x^{n}+(na_{n}+a_{n-1})x^{n-1}+\ldots + (2a_{2}+a_{1})x+a_{1}+a_{0}=x^{3}, откуда n=3,\;a_{n=3}=1,\; 3+a_{2} = 0,\; -6+a_{1}=0,\;6+a_{0}=0, следовательно, P(x) = x^{3}-3x^2+6x-6. Имеем: y = \dfrac{8}{3}C_{1}e^{x}+\dfrac{8}{3}(x^{3}-3x^2+6x-6)e^{x}+C_{2} = \boxed{\dfrac{8}{3}e^{x}(x^3-3x^2+6x-6+C_{1})+C_{2}}, где C_{1} = \dfrac{3}{8}\overline{C}.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра