1. (x-2)√(x+5)/(x-3)√(x+3)≥0
вспоминаем про квадратный корень, что он всегда больше равен 0 и что подкоренное выражение всегда также больше равно 0. И знаменатель не равен 0
Итак (x+5)≥0 x≥-5
x+3>0 x>0
x-3≠0 x≠3
ОДЗ x∈(-3 3) U (3 + ∞)
одзз нашли значит корни можно отбросить так как они всегда больше равны 0
(x-2)/(x-3)≥0
используем метод интервалов находим интервалы и пересекаем с ОДЗ
[2] (3) (рисунок)
x∈(-∞ 2] U (3 +∞)∞ и пересекаем с ОДЗ x∈(-3 3) U (3 + ∞)
ответ x∈(-3 2] U (3 + ∞)
2. (x+1)(x-2)√(3-x)(x+2) > 0
ОДЗ подкоренное выражение больше (равно на этот раз не надо , так как строгое неравенство) 0
(3-x)(x+2)>0 Опять метод интервалов
(-2) (3)
x∈(-2 3)
опять одз нашли отбрасываем корень так как он больше 0 и методом интервалов решаем неравенство (x+1)(x-2) > 0 и пересекаем с одз
(-1) (2)
x∈(-∞ -1) U (2 +∞) и пересекаем с x∈(-2 3)
ответ х∈(-2 -1) U (2 3)
нравится решение ставь лайк и лучший
1. (x-2)√(x+5)/(x-3)√(x+3)≥0
вспоминаем про квадратный корень, что он всегда больше равен 0 и что подкоренное выражение всегда также больше равно 0. И знаменатель не равен 0
Итак (x+5)≥0 x≥-5
x+3>0 x>0
x-3≠0 x≠3
ОДЗ x∈(-3 3) U (3 + ∞)
одзз нашли значит корни можно отбросить так как они всегда больше равны 0
(x-2)/(x-3)≥0
используем метод интервалов находим интервалы и пересекаем с ОДЗ
[2] (3) (рисунок)
x∈(-∞ 2] U (3 +∞)∞ и пересекаем с ОДЗ x∈(-3 3) U (3 + ∞)
ответ x∈(-3 2] U (3 + ∞)
2. (x+1)(x-2)√(3-x)(x+2) > 0
ОДЗ подкоренное выражение больше (равно на этот раз не надо , так как строгое неравенство) 0
(3-x)(x+2)>0 Опять метод интервалов
(-2) (3)
x∈(-2 3)
опять одз нашли отбрасываем корень так как он больше 0 и методом интервалов решаем неравенство (x+1)(x-2) > 0 и пересекаем с одз
(-1) (2)
x∈(-∞ -1) U (2 +∞) и пересекаем с x∈(-2 3)
ответ х∈(-2 -1) U (2 3)
нравится решение ставь лайк и лучший