Если предел общего члена ряда равен 0, то ответ о сходимости ряда дать невозможно. Поэтому ряд надо исследовать с других признаков. (Вот если бы предел общего члена ряда не был = 0, то вывод можно было бы сделать однозначно, ряд бы расходился.)
Применим признак сравнения:
По признаку сравнения: мажорантный ряд сходится, значит сходится и минорантный ряд ⇒ исходный ряд сходится .
Получили, что сходится минорантный ряд, а из этого факта не следует сходимость мажорантного ряда. Поэтому применим признак сравнения в предельной форме.
Объяснение:
ответ: ряд сходится.
ответ: ряд сходится.
Так как кубическая функция х³ имеет более высший порядок роста, чем логарифмическая функция ln(n) ⇒
ответ: ряд сходится.
Если предел общего члена ряда равен 0, то ответ о сходимости ряда дать невозможно. Поэтому ряд надо исследовать с других признаков. (Вот если бы предел общего члена ряда не был = 0, то вывод можно было бы сделать однозначно, ряд бы расходился.)
Применим признак сравнения:
По признаку сравнения: мажорантный ряд сходится, значит сходится и минорантный ряд ⇒ исходный ряд сходится .
Получили, что сходится минорантный ряд, а из этого факта не следует сходимость мажорантного ряда. Поэтому применим признак сравнения в предельной форме.
Оба ряда ведут себя одинаково, то есть сходятся .
Оба ряда ведут себя одинаково, то есть сходятся .
Оба ряда расходятся .
Оба ряда сходятся .