Log2

3

(x − 1) − 2log3

(x − 1) > 3​

irina20042005 irina20042005    3   01.07.2021 12:39    0

Ответы
francyz19841 francyz19841  31.07.2021 13:20

\displaystyle log_3^2(x-1) - 2log_3(x-1)3

ОДЗ: x-1 > 0     =>     x>1

\displaystyle log_3^2(x-1) - 2log_3(x-1)3\\\bigg| log_3(x-1) = t \bigg|\\\\t^2 - 2t3\\t^2-2t-30\\D = 4-4*(-3*1) = 16\\\sqrt{D} = 4\\\\t=\frac{2\pm4}{2}\\t_1 = 3\\t_2 = -1

\displastyle \ _{} ~~~~~~~~~~ +~~~~~~~~-~~~~~~~+\\-\infty \ \ \text{---------o}\text{---------o}\text{---------}\text{t}\\ \ \ ~~~~~~~~~~~~~~~~~\text{-1}~~~~~~~~~3 \\\\ t\in(-\infty;-1)\cup(3;+\infty) \\\\\\

\displaystyle \left[\begin{gathered}log_3(x-1) \ \ 3\end{gathered}\right. \hfill _{}\\\\\\\left[\begin{gathered}x-127\end{gathered}\right. _{} -\left[\begin{gathered}x28\end{gathered}\right. \hfill \ _{}_{}

Найдём пересечение с ОДЗ:

\\~~_{_{\text{------------------------------}}}_{_{\text{------------------------}}}_{_{\text{--------------------}}} \\ ~~\diagdown\diagdown\diagdown\diagdown\diagdown\diagdow\diagdown\big{|}\big\times\big\times\big\times\big\times\big\time\big{|}\diagup\diagup\diagup\diagup\big{|}\big\times\big\times\big\times\big\times\big\times \\-\infty \ \ \text{---------o}\text{---------o}\text{---------o}\text{---------}+\infty\\ \ \ ~~~~~~~~~~~~~~~~~~\text{1}~~~~~~~~~\frac{4}{3} ~~~~~~~~\text{2}\text{8}

\displaystyle x\in\bigg(1;\frac{4}{3}\bigg)\cup\bigg(28;+\infty\bigg) \\\\\\

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра