Найдем уравнение касательной, проходящей через точку с абсциссой
Для этого найдем производную данной функции:
Найдем значение функции в точке с абсциссой :
Найдем значение производной данной функции в точке с абсциссой :
Уравнение касательной имеет вид:
Подставим значение
Итак, уравнение касательной заданной функции:
Воспользуемся геометрическим смыслом касательной: коэффициент наклона касательной численно равен тангенсу угла наклона с положительным направлением оси
В найденной касательной коэффициент , следовательно, при или
ответ: или
Найдем уравнение касательной, проходящей через точку с абсциссой
Для этого найдем производную данной функции:
Найдем значение функции в точке с абсциссой
:
Найдем значение производной данной функции в точке с абсциссой
:
Уравнение касательной имеет вид:
Подставим значение
Итак, уравнение касательной заданной функции:
Воспользуемся геометрическим смыслом касательной: коэффициент наклона
касательной
численно равен тангенсу угла наклона
с положительным направлением оси 
В найденной касательной коэффициент
, следовательно,
при
или 
ответ:
или 