Какое наименьшее число взвешиваний на чашечных весах нужно сделать, чтобы из 24 монет наверняка обнаружить единственную фальшивую (более легкую) монету?

LizaVasilenko3636 LizaVasilenko3636    3   01.07.2019 03:30    0

Ответы
Liza81818191 Liza81818191  24.07.2020 14:42
Думаю, что 4 взвешивания.
1-ое взвешивание - Берем и делим 24 монеты на 2 равные части по 12 монет. Взвешиваем обе части. Та часть, где фальшивая монета, будет легче. Оставляем для исследования эту часть.
2-ое взвешивание - Берем и делим 12 монет на 2 равные части по 6 монет. Взвешиваем обе части. Та часть, где фальшивая монета, будет легче. Оставляем для исследования эту часть.
3-е взвешивание - Берем и делим 6 монет на 2 равные части по 3 монеты. Взвешиваем обе части. Та часть, где фальшивая монета, будет легче. Оставляем для исследования эту часть.
4-ое взвешивание - Берем и делим 3 монеты на 3 равные части по 1 монете. Взвешиваем любые две монеты. Если одна из них легче, то она фальшивая. Если на весах равенство, то фальшивая та, которая осталась невзвешенной..
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра