а) 64a² - x² = (8a – x) * (8a + x);
б) x5 – 2x4 + x³ = x³ * (x² - 2x + 1) = x³ * (x – 1)²;
в) 1 – 64z³ = (1 – 4z) * (1 + 4z + 16z²);
г) 36x² - (1 – x)² = (6x – (1 – x)) * (6x + (1 – x)) = (7x – 1) * (5x + 1).
88 + 87 – 86.
Выносим за скобки общий множитель 86 и получаем:
86 * (8² + 8 – 1) = 86 * (64 + 8 – 1) = 86 * 71.
Один из множителей 71, значит, исходное выражение делится на 71. Что и требовалось доказать.
Уравнение.
(x + 1) * (x² - x + 1) = x³ - 2x
x³ - x² + x + x² - x + 1 – x³ + 2x = 0
2x + 1 = 0
2x = -1
x = -0,5.
ответ: х = -0,5.
1) (1-4z)(1+4z+16z^2)2)(7x-1)(5x+1)
Объяснение:В первом используется формула разницы кубов;Во втором разницы квадратов, (6x-(1-x))(6x+(1-x))=(7x-1)(5x+1)
а) 64a² - x² = (8a – x) * (8a + x);
б) x5 – 2x4 + x³ = x³ * (x² - 2x + 1) = x³ * (x – 1)²;
в) 1 – 64z³ = (1 – 4z) * (1 + 4z + 16z²);
г) 36x² - (1 – x)² = (6x – (1 – x)) * (6x + (1 – x)) = (7x – 1) * (5x + 1).
88 + 87 – 86.
Выносим за скобки общий множитель 86 и получаем:
86 * (8² + 8 – 1) = 86 * (64 + 8 – 1) = 86 * 71.
Один из множителей 71, значит, исходное выражение делится на 71. Что и требовалось доказать.
Уравнение.
(x + 1) * (x² - x + 1) = x³ - 2x
x³ - x² + x + x² - x + 1 – x³ + 2x = 0
2x + 1 = 0
2x = -1
x = -0,5.
ответ: х = -0,5.
1) (1-4z)(1+4z+16z^2)
2)(7x-1)(5x+1)
Объяснение:
В первом используется формула разницы кубов;
Во втором разницы квадратов, (6x-(1-x))(6x+(1-x))=(7x-1)(5x+1)