Как решить уравнение: 1/2lg(x^2 +x-5)=lg5x-lg(1/5x)

sashabisaev030303 sashabisaev030303    1   09.07.2019 14:20    26

Ответы
ajgizaahmetsina ajgizaahmetsina  19.08.2020 07:28
Сначала ОДЗ:
 х² + х -5>0  ⇒ x∈(-∞; (-1-√21)/2)∨((-1+√21)/2 ; +∞)
                         5x >0  ⇒ х >0
                        1/5x > 0  ⇒>0
ОДЗ: х∈((-1+√21)/2;+∞)
Теперь решаем:
√(х² +х -5) = 5х:(1/5х)
√(х² +х -5) = 25х²
ПОКАЗАТЬ ОТВЕТЫ
Artem228133 Artem228133  22.01.2024 19:08
Привет! Конечно, я рад помочь тебе решить это уравнение. Давай разберем каждый шаг по порядку.

Дано уравнение:

1/2 * log(x^2 + x - 5) = log(5x) - log(1/5x)

Для начала, мы можем преобразовать выражение на правой стороне уравнения, используя свойство логарифма, которое гласит:

log(a) - log(b) = log(a/b)

Используем это свойство и разложим выражение на правой стороне:

log(5x) - log(1/5x) = log(5x / (1/5x))

Мы также можем использовать свойство логарифма, которое гласит:

log(a) - log(b) = log(a/b)

Давай упростим выражение внутри логарифма:

5x / (1/5x) = 5x * (5x/1) = 25x^2

Теперь уравнение имеет вид:

1/2 * log(x^2 + x - 5) = log(25x^2)

Для того, чтобы избавиться от логарифмов, мы можем использовать свойство эквивалентности логарифмов, которое гласит:

log(a) = log(b) тогда и только тогда, когда a = b

Применим это свойство и избавимся от логарифмов на обеих сторонах уравнения:

x^2 + x - 5 = 25x^2

Соберем все переменные на одной стороне уравнения:

x^2 - 25x^2 + x - 5 = 0

-24x^2 + x - 5 = 0

Теперь у нас есть квадратное уравнение. Для его решения воспользуемся формулой дискриминанта:

x = (-b ± √(b^2 - 4ac)) / 2a

В данном случае, a = -24, b = 1 и c = -5. Подставим эти значения в формулу:

x = (-(1) ± √((1)^2 - 4(-24)(-5))) / (2(-24))

Упростим:

x = (-1 ± √(1 - 480)) / (-48)

x = (-1 ± √(-479)) / (-48)

Так как подкоренное выражение отрицательное, уравнение не имеет решений в действительных числах.

Поэтому, решение данного уравнения можно оставить в виде:

x = (-1 ± √(-479)) / (-48)

Это окончательный ответ.

Надеюсь, я смог тебе помочь. Если у тебя возникнут еще вопросы, не стесняйся задавать их!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра