Как решить такое: сколькими можно разделить множество {х|х€n, -5< (=)x< 5 на два непересекающихся подмножества? p.s "-5< (=)x" это нестрогое равенство

milaB67 milaB67    2   03.09.2019 08:20    11

Ответы
Assassin5510 Assassin5510  20.08.2020 20:58
Исходное множество состоит из 4 элементов: 1, 2, 3, 4.

Пусть подмножества различимы. Поставим в соответствие разбиению строчку из 4 символов 0 или 1: на i-м месте 0, если число в первом множестве, 1, если во втором.

Понятно, что число таких строк совпадает с числом возможных разбиений. На каждом месте может находиться один из двух символов, все символы можно менять независимо, поэтому таких строк 2^4 = 16.

ответ. 16.

Если подмножества неразличимы, то каждое разбиение подсчитано дважды. Поэтому ответ в два раза меньше, 2^3 = 8.



Upd. В комментарии написали, что ответ якобы 10. Это не очень похоже на правду. Если не различать подмножества, то ответ не может быть больше 8. Если различать подмножества, то надо как-то отвергнуть 6 вариантов разбиения. Как это сделать, непонятно.

Можно рассматривать разбиения на непустые подмножества, т.е. отвергнуть варианты, в которых все элементы попадают в одно подмножество, а второе пусто. Если различать подмножества, получится 16 - 2 = 14 вариантов, если не различать - 7. В любом случае 10 не получается.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра