c/(a+b)+a/(b+c)+b/(a+c)=c/(a+b)+a/(b+c)+b/(a+c)+1+1+1-3=
=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(a+c)-3=
=(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))-3=2012*1-3=2012-3=2009
c/(a+b)+a/(b+c)+b/(a+c)=c/(a+b)+a/(b+c)+b/(a+c)+1+1+1-3=
=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(a+c)-3=
=(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))-3=2012*1-3=2012-3=2009