Изучая статистику, Сергей придумал новый метод вычисления среднего арифметического. Сергей рассуждал так. Я в уме легко найду среднее двух чисел. Сначала упорядочу все числа. Затем
наименьшее и наибольшее числа заменю их средним арифметическим. Потом заменю второе и предпоследнее по величине числа их средним и так далее. Может
быть, у меня останется одно число без пары, но всё равно получится набор, в котором меньше чисел. Я его ещё раз уменьшу таким же образом и рано или поздно
дойду до одного числа.
XIV Олимпиада по теории вероятностей и статистике. Пригласительный тур. 13.11.2020. Вариант 2
© Лаборатория теории вероятностей МЦНМО, 2020
Пусть, например, нужно найти среднее арифметическое набора
(9, 2, 6, 5, 8). Упорядочу его: (2, 5, 6, 8, 9). Теперь числа 2 и 9 заменяю их средним
5,5, числа 5 и 8 заменяю их средним 6,5, и остаётся число 6 без пары. Получается
набор (5,5, 6, 6,5). Числа 5,5 и 6,5 заменяю их средним 6. Получается набор (6, 6),
поэтому среднее арифметическое данного набора равно 6.
а) (От 6 класса) Покажите, что для вычисления среднего арифметического
произвольного числового набора этот не годится.
б) (От 7 класса) Друг Сергея Пётр сказал, что Сергея верно работает, если в числовом наборе определённое количество чисел, и неважно, каковы
сами числа. Прав ли Пётр? Сколько чисел должно быть в наборе, чтобы
Сергея работал верно?
ОТВЕТИТЬ РАЗВЁРНУТО