Измерение дальности до объекта осуществляется без систематических ошибок. случайная ошибка подчиняется нормальному закону со средним квадратическим отклонением 25 метров. найти вероятность измерения дальности с ошибкой, не превосходящей по абсолютной величине 25 метров
Нормальный закон распределения со средним квадратичным отклонением σ означает, что функция плотности вероятности имеет вид:
(1)
График функции (1) имеет вид "колокола" симметричного относительно прямой х=0. (В более общем виде тут еще задействовано матожидание (или "среднее значение" х) m (и колокол тогда смещатся), но тогда в смысле ошибок можно было бы говорить о наличии систематической погрешности, а она у нас равна 0. Вот мы и считаем что функция распределения вероятности симметрична относительно 0 ).
С учетом того, что среднее квадратичное отклонение σ=25 функция (1) примет вид:
(2)
Функция плотности вероятности f(x) является 1-й производной функции распределения случайной величины x F(x). Т.е:
(3)
Что означают такие функции? Что можно найти с их
Например вероятность того, что случайная величина х попадет в диапазон (интервал) (a1; a2) определяется отношением:
(4)
При этом функция распределения F(x) задает вероятность попадания случайной величины в интервал (-∞, x).
Итак У нас известна функция распределения вероятности (2) известен задан диапазон в который должна попасть случайная величина (наша погрешность), (-25, 25 ). Чтобы найти вероятность того, что ошибка не вылезет за пределы заданного интервала, все что нам нужно сделать, это взять интеграл вида (4), подставив туда вместо f(x) её выражение (2) и вместо пределов интегрирования поставить границы интервала -25 и 25. Т.е.
(5)
И все бы хорошо, НО интеграл вида (5) "неберушка", т.е. его нельзя выразить в элементарных функциях. Исключение составляют интегралы с бесконечными, или "полубесконечными" пределами интегрирования (интеграл Пуассона например). Что нам делать? Как быть? Инегралы такого рода можно посчитать различными численно (приближенно) с любой наперед заданной точностью. Мы этого правда делать не будем. Это уже все проделано до нас и составлено уйма таблиц. Их можно найти и в книжном(бумажном) и в электроном вариантах. Однако есть один момент.Затабулировано целое семейство похожих функций, имеющих к тому же похожие названия, например мне по запросу навскидку попались попадались такие:
1) Функция Лапласа (в другом месте Интеграл вероятности) или даже так:
Функция стандартного нормального распределения
(6)
2) Еще один интеграл вероятности:
(7)
3) где то вылезла таблица функции
(8).
Что с этим делать? Смириться и внимательно смотреть, какая именно функция дана в таблице. При этом исходный интеграл (5) можно свести к табличному интегралу путем замены переменных и вынесения множителя.
Например так:
Подынтегральная функция (четная) ⇒ можно записать:
(9)
далее вводим новую переменную
тогда
при этом если x=0, то u=0,
x=25, u=σx=σ*25=A
интеграл (9) приобретает вид:
(10)
Получили интеграл вида (6) умноженный на 2σ,
ВНИМАНИЕ! ПРЕДЕЛЫ ИНТЕГРИРОВАНИЯ ИЗМЕНИЛИСЬ!
Тот, кто "дружит" с электронными таблицами может поискать в них похожие функции. Это будет удобно, если необходимо выполнить "серию" расчетов, мне например (после некоторых мытарств) удалось в своем Сalc( у меня Libre Office 4.2 ) найти функцию
NORMDIST(X; m; σ; C), которая в зависимости от параметра C выдает
значение либо функции распределения случайной величины (с=1), либо значение плотности вероятности (c=0) в точке X.
Тут
m матожидание случайной величины, у нас оно =0 как мы уже говорили выше.
σ среднеквадратичное отклонение =25.
Таким образом вычиление интеграла (5) обошлось сравнительно "малой кровью"
когда в таблице вычислили выражение:
NORMDIST(25; 0; 25; 1) - NORMDIST(-25; 0; 25; 1)
Итого
ответ P(-25;25)≈0,6827