Из пункта A круговой трассы выехал велосипедист, а через 20 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 40 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 40 км. ответ дайте в км/ч.
Обозначим скорость мотоциклиста через x . До первой встречи велосипедист провёл на трассе 20 мин + 10мин = 30мин = 1/2 часа ,
а мотоциклист провёл не трассе 10мин = 1/6 часа .
Если скорость мотоциклиста х км/ч и ехал он до первой встречи 1/6 часа, то он проехал 1/6x км . Велосипедист проехал такой же путь, но за 1/2 часа , значит скорость велосипедиста равна :
1/6x : 1/2 = 1/3x км/ч
Если через 40 мин , то есть 2/3 часа после первой встречи мотоциклист догнал велосипедиста во второй раз, то учитывая, что они двигаются в одном направлении, то есть это движение вдогонку, то скорость найдём как разность скоростей мотоциклиста и велосипедиста :
x - 1/3x = 2/3x км/ч
Составим и решим уравнение :
2/3x * 2/3 = 40
4/9x = 40
x = 90 км/ч - скорость мотоциклиста