График функции f(x)=3x^2+6x-7 это парабола ветвями вверх. Находим вершину параболы: Хо = -в/2а = -6/(2*3) = -6/6 = -1. Уо = 3*1 + 6*(-1) - 7 = -10. Это минимум функции, максимума у функции нет. Находим точки пересечения с осями. С осью Оу при х = 0, у = -7. С осью Ох при у = 0. Для этого надо решить квадратное уравнение: 3x^2 + 6x - 7 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=6^2-4*3*(-7)=36-4*3*(-7)=36-12*(-7)=36-(-12*7)=36-(-84)=36+84=120;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√120-6)/(2*3)=(√120-6)/6=√120/6-6/6=√120/6-1 ≈ 0.825742;x_2=(-√120-6)/(2*3)=(-√120-6)/6=-√120/6-6/6=-√120/6-1 ≈ -2.825742.
Находим вершину параболы:
Хо = -в/2а = -6/(2*3) = -6/6 = -1.
Уо = 3*1 + 6*(-1) - 7 = -10.
Это минимум функции, максимума у функции нет.
Находим точки пересечения с осями.
С осью Оу при х = 0, у = -7.
С осью Ох при у = 0.
Для этого надо решить квадратное уравнение:
3x^2 + 6x - 7 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=6^2-4*3*(-7)=36-4*3*(-7)=36-12*(-7)=36-(-12*7)=36-(-84)=36+84=120;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√120-6)/(2*3)=(√120-6)/6=√120/6-6/6=√120/6-1 ≈ 0.825742;x_2=(-√120-6)/(2*3)=(-√120-6)/6=-√120/6-6/6=-√120/6-1 ≈ -2.825742.