Исследуйте функцию f(x)=2x^3-6x+4. постройте ее график.

dimasikmirnyy9 dimasikmirnyy9    2   22.08.2019 19:30    3

Ответы
Лuзуня Лuзуня  09.08.2020 17:17
Берем производную:
f(x)'=2(3x^2)-6=6x^2-6
ищем экстремиумы:
6x^2-6=0; x^2=1; x1=1; x2=-1
y1=0, y2=8;
у функции 2 экстремиума: (1;0) и (-1;8)
определяем методом интервалов возрастание/убывание:
возрастает: x=(-беск;-1] и [1;+беск)
убывает: x= [-1;1]
определаяем четность/нечетность:
f(-x)=2(-x)^3-6(-x)+4=-2x^3+6x+4=-(2x^3-6x-4) - функция не является ни четной ни нечетной;
ищем точки перегиба:
берем 2 производную:
f(x)''=6(2x)=12x
12x=0; x=0;
y=4; (0;4)
методом интервалов находим выпуклость/ вогнутсть:
выпукла: (-беск;0]
вогнута: [0;+беск)
собираем точки:
(1;0), (-1;8), (0,4)
и по ним строим график:
Исследуйте функцию f(x)=2x^3-6x+4. постройте ее график.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра