Исследовать функцию на монотонность и экстремумы

vladyslav2523 vladyslav2523    3   01.07.2019 14:40    1

Ответы
rasulR1 rasulR1  24.07.2020 22:55
Решение
 Находим интервалы возрастания и убывания.
 Первая производная:
f'(x) = 2e^(2x) - 3e^x + 1
Находим нули функции. Для этого приравниваем производную к нулю
2e^(2x) - 3e^x + 1 = 0
Откуда:
x₁ = 0
x₂ = -ln(2)
(-∞ ;-ln(2)),  f'(x) > 0,  функция возрастает
(-ln(2); 0),  f'(x) < 0,  функция убывает
(0; +∞), f'(x) > 0, функция возрастает
В окрестности точки x = -log(2) производная функции меняет знак с (+)
на (-). Следовательно, точка x = -log(2) - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+).
Следовательно, точка x = 0 - точка минимума.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра