1. Область определения:
x∈(-∞;-1)∪(-1;2)∪(2;+∞)
2. Функция общего вида.
3. Найдём точки пересечения с осями:
4. Исследование с первой производной:
Cм. внизу.
5. Исследование с второй производной:
Выражение в скобках в числителе всегда положительное и не равняется нулю, см. внизу.
6. Уравнение асимптот:
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:
Находим коэффициент k:
Находим коэффициент b:
Получаем уравнение наклонной асимптоты: у=x+2
Найдем вертикальные асимптоты. Для этого определим точки разрыва:
Находим переделы в точке x=-1
Это точка разрыва II рода и является вертикальной асимптотой.
Находим переделы в точке x=2
1. Область определения:
x∈(-∞;-1)∪(-1;2)∪(2;+∞)
2. Функция общего вида.
3. Найдём точки пересечения с осями:
4. Исследование с первой производной:
Cм. внизу.
5. Исследование с второй производной:
Выражение в скобках в числителе всегда положительное и не равняется нулю, см. внизу.
6. Уравнение асимптот:
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:![\lim_{x\to\infty}{(kx+b-f(x))}](/tpl/images/3196/0190/4bc76.png)
Находим коэффициент k:![\lim_{x\to\infty}{\frac{f(x)}{x}}\\\lim_{x\to\infty}{\frac{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}}{x}}=\lim_{x\to\infty}{\frac{x^{3}+x^{2}-x-2}{x^{3}-x^{2}-2x}}=1](/tpl/images/3196/0190/a0280.png)
Находим коэффициент b:![\lim_{x\to\infty}{f(x)-k*x}\\\lim_{x\to\infty}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}-x}=\lim_{x\to\infty }{\frac{2*x^{2}+x-2}{x^{2}-x-2}}=2](/tpl/images/3196/0190/8f528.png)
Получаем уравнение наклонной асимптоты: у=x+2
Найдем вертикальные асимптоты. Для этого определим точки разрыва:![x_1=-1;x_2=2](/tpl/images/3196/0190/7c43b.png)
Находим переделы в точке x=-1
Это точка разрыва II рода и является вертикальной асимптотой.
Находим переделы в точке x=2
Это точка разрыва II рода и является вертикальной асимптотой.