Имеется два сплава. первый сплав содержит 10% никеля, второй — 25% никеля. из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. на сколько килограммов масса первого сплава меньше массы второго?
Масса первого сплава равна Х, масса второго сплава равна У, масса третьего складывается из массы второго и первого сплава, получаем Х+У=150, никелевое содержание в первом сплаве равно 10%=0,1, во втором 25%=0,25, в третьем 20%=0,2. Содержание никеля в кг будет таким: в первом 0,1х, во втором 0,25у, в третьем 30 кг( мы нашли его: 0,2*150=30). теперь составим уравнение Х+У=150 у=150-х 0,1х+ 0,25у=30 0,1х+0,25(150-х)=30
0,1х+37,5-0,25х=30 0,1х-0,25х=30-37,5 -0,15х=-7,5( теперь умножаем на (-1)) 0,15х=7,5 х=50, масса первого сплава равна 50кг, масса второго 150-50=100кг 100-50=50 ответ: на 50 кг масса второго сплава больше массы первого сплава
Х+У=150 у=150-х
0,1х+ 0,25у=30 0,1х+0,25(150-х)=30
0,1х+37,5-0,25х=30
0,1х-0,25х=30-37,5
-0,15х=-7,5( теперь умножаем на (-1))
0,15х=7,5
х=50,
масса первого сплава равна 50кг, масса второго 150-50=100кг
100-50=50
ответ: на 50 кг масса второго сплава больше массы первого сплава