1. Рассмотрим первый множитель (-2/3a^-4b^-8)^-2:
- Возьмем обратно число и знаменатель, чтобы избавиться от отрицательных показателей степеней:
(-2/3a^-4b^-8)^-2 = (-2)^-2 / (3a^-4b^-8)^-2
- Возводим числитель и знаменатель в степень по отдельности, учитывая, что отрицательная степень равна обратному числу в положительной степени:
(-2)^-2 = 1/(-2)^2 = 1/4
(3a^-4b^-8)^-2 = 1/(3a^-4b^-8)^2 = 1/(3^2a^-4b^-8)^2 = 1/(9a^-8b^-16)
- Теперь у нас есть (-2/3a^-4b^-8)^-2 = 1/4 * 1/(9a^-8b^-16)
2. Рассмотрим второй множитель (3a^2b^12)^-3:
- Возьмем обратно число и знаменатель:
(3a^2b^12)^-3 = (3a^2b^12)^-3 / 1
- Возводим каждую переменную в степень по отдельности, учитывая, что отрицательная степень равна обратному числу в положительной степени:
(3a^2b^12)^-3 = 1/(3a^2b^12)^3 = 1/(3^3a^6b^36)
3. Теперь у нас есть выражение (-2/3a^-4b^-8)^-2 * (3a^2b^12)^-3:
(-2/3a^-4b^-8)^-2 * (3a^2b^12)^-3 = (1/4 * 1/(9a^-8b^-16)) * (1/(3^3a^6b^36))
4. Упростим эту дробь, объединяя дроби вместе и используя свойства степеней:
(1/4 * 1/(9a^-8b^-16)) * (1/(3^3a^6b^36)) = (1/4 * 1/(9 * 3^3 * a^-8 * a^6 * b^-16 * b^36)) = 1/(4 * 9 * 3^3 * a^-2 * b^20)
1. Рассмотрим первый множитель (-2/3a^-4b^-8)^-2:
- Возьмем обратно число и знаменатель, чтобы избавиться от отрицательных показателей степеней:
(-2/3a^-4b^-8)^-2 = (-2)^-2 / (3a^-4b^-8)^-2
- Возводим числитель и знаменатель в степень по отдельности, учитывая, что отрицательная степень равна обратному числу в положительной степени:
(-2)^-2 = 1/(-2)^2 = 1/4
(3a^-4b^-8)^-2 = 1/(3a^-4b^-8)^2 = 1/(3^2a^-4b^-8)^2 = 1/(9a^-8b^-16)
- Теперь у нас есть (-2/3a^-4b^-8)^-2 = 1/4 * 1/(9a^-8b^-16)
2. Рассмотрим второй множитель (3a^2b^12)^-3:
- Возьмем обратно число и знаменатель:
(3a^2b^12)^-3 = (3a^2b^12)^-3 / 1
- Возводим каждую переменную в степень по отдельности, учитывая, что отрицательная степень равна обратному числу в положительной степени:
(3a^2b^12)^-3 = 1/(3a^2b^12)^3 = 1/(3^3a^6b^36)
3. Теперь у нас есть выражение (-2/3a^-4b^-8)^-2 * (3a^2b^12)^-3:
(-2/3a^-4b^-8)^-2 * (3a^2b^12)^-3 = (1/4 * 1/(9a^-8b^-16)) * (1/(3^3a^6b^36))
4. Упростим эту дробь, объединяя дроби вместе и используя свойства степеней:
(1/4 * 1/(9a^-8b^-16)) * (1/(3^3a^6b^36)) = (1/4 * 1/(9 * 3^3 * a^-8 * a^6 * b^-16 * b^36)) = 1/(4 * 9 * 3^3 * a^-2 * b^20)
5. Учтем свойства умножения и деления степеней:
1/(4 * 9 * 3^3 * a^-2 * b^20) = 1/(4 * 9 * 27 * 1/a^2 * b^20) = 1/(4 * 9 * 27 / (a^2 * b^-20)) = a^2 * b^20 / (4 * 9 * 27)
6. Наконец, упростим числитель и знаменатель:
a^2 * b^20 / (4 * 9 * 27) = a^2 * b^20 / (4 * 243) = (a^2 * b^20) / 972
Таким образом, окончательный ответ будет: (a^2 * b^20) / 972.