Мне кажется очевидным, что если сумма двух чисел рациональна, то и оба этих числа рациональны. Однако для уверенности можно сделать так:
Рациональное число представимо в виде дроби m/n. Если некое число K, являющееся суммой корней, рационально, то оно представимо в виде K1/K2. Раз оно равно сумме, то его числитель можно расписать как K1x + K1y, после чего разделить эту дробь на сумму двух дробей К1х/К2 + К1у/К2. Каждая из этих дробей будет соответствовать корням и удовлетворять критерию рациональности - следовательно, корни х и у рациональны.
Мне кажется очевидным, что если сумма двух чисел рациональна, то и оба этих числа рациональны. Однако для уверенности можно сделать так:
Рациональное число представимо в виде дроби m/n. Если некое число K, являющееся суммой корней, рационально, то оно представимо в виде K1/K2. Раз оно равно сумме, то его числитель можно расписать как K1x + K1y, после чего разделить эту дробь на сумму двух дробей К1х/К2 + К1у/К2. Каждая из этих дробей будет соответствовать корням и удовлетворять критерию рациональности - следовательно, корни х и у рациональны.
Не очень аккуратное доказательство, на самом деле